Nutrition
|
October 18, 2023

The Top 6 Essential Health Benefits of Magnesium That You Should Know

Medically Reviewed by
Updated On
September 17, 2024

Magnesium is an essential mineral, serving as a cornerstone of human health by playing a multifaceted role in various physiological processes within the body. Magnesium's importance in maintaining good health and preventing chronic diseases cannot be overstated. It participates in over 300 enzymatic reactions, impacting everything from energy production to nerve function and muscle contractions. Furthermore, magnesium is a natural calcium blocker, regulating heart rhythm and supporting cardiovascular health. In functional medicine, understanding magnesium's pivotal role has led to a focus on its supplementation, dietary incorporation, and its impact on overall wellness. As we delve deeper, it becomes apparent that ensuring optimal magnesium status is crucial in pursuing optimal health and vitality. (32, 46

[signup]

Historical Context of Magnesium Therapy

The use of magnesium in therapeutic applications has a rich historical context that spans centuries. Its medicinal properties have been recognized and utilized by various cultures around the world. In ancient times, magnesium-rich mineral waters were sought after for their healing effects. In the 17th and 18th centuries, exploring natural springs and mineral waters became increasingly popular in Europe. In 1695, magnesium sulfate was isolated from the Epsom spring water by Nehemiah Grew. Epsom salt, a magnesium sulfate compound, is still widely used today for therapeutic purposes. (16

Since then, magnesium has continued to gain recognition for its importance in human biology and physiology. Magnesium deficiency has been linked to various health conditions, and this knowledge has paved the way for the development of magnesium supplements and therapies in modern medicine to treat conditions including muscle cramps, cardiovascular issues, and migraine headaches.

Sources of Magnesium in the Diet

There is a diverse array of natural sources of magnesium, and the body typically absorbs 30-40% of dietary magnesium consumed. In general, foods that are high in fiber are high in magnesium. Examples of magnesium-rich foods include green leafy vegetables, legumes, nuts, seeds, and whole grains. (26

Magnesium Deficiency: Causes and Symptoms

Magnesium deficiency is a prevalent global health concern, with varying rates influenced by factors such as age, gender, diet, and geographical location. The National Health and Nutrition Examination Survey (NHANES) 2005-2006 reported approximately 48% of the U.S. population had insufficient magnesium intake from food sources. (26

Early signs of magnesium deficiency include loss of appetite, nausea, vomiting, fatigue, and weakness. As the deficiency worsens, numbness, tingling, muscle cramping, abnormal muscle movements, seizures, confusion, and heart arrhythmias can occur. Magnesium deficiency can also disrupt the balance of other electrolytes, causing hypocalcemia (low serum calcium levels) and hypokalemia (low serum potassium levels). Furthermore, magnesium deficiency has been associated with the development of many diseases, including asthma, atherosclerosis, diabetes,  hypertension, migraines, and osteoporosis. (26

Causes of low magnesium levels include:

  • Habitually low dietary intake of magnesium
  • Chronic health conditions: gastrointestinal diseases, type 2 diabetes, alcohol dependence
  • Medications: diuretics, proton pump inhibitors, theophylline, digoxin, oral contraceptive pills
  • Chronic stress

The Top 6 Therapeutic Uses of Magnesium

Magnesium powers many functions in our bodies. In this section, we will discuss six ways that magnesium can improve health. 

1. Cardiovascular Health

Magnesium plays a crucial role in maintaining optimal cardiovascular health, exerting its influence through various biochemical mechanisms. One of its primary functions is regulating heart rhythm. Magnesium's role in regulating heart rhythm is multifaceted; it influences ion transport, blocks excessive calcium entry into cells, stabilizes cell membranes, and modulates potassium levels. By performing these functions, magnesium helps maintain a steady and coordinated heartbeat. (24

Furthermore, magnesium supports healthy endothelial function. A meta-analysis concluded that taking magnesium for at least six months improves flow-mediated dilatation, a marker of endothelial function, in patients who are unhealthy, over age 50, or overweight (21). Endothelial cells help regulate blood flow, prevent clot formation, and maintain the flexibility of blood vessels. Magnesium promotes the production of nitric oxide, a molecule that relaxes blood vessels. This relaxation (vasodilation) helps reduce the risk of hypertension, or high blood pressure, a significant cardiovascular risk factor. Magnesium also supports the kidneys in regulating blood pressure by controlling the balance of sodium and potassium in the body. Evidence suggests that hypertensive patients with hypomagnesemia (low serum magnesium levels) usually require higher doses of antihypertensive medications than those with normal magnesium levels. (15)

By supporting endothelial health, magnesium also contributes to the prevention of atherosclerosis, a condition where plaque builds up in the arteries, narrowing them and potentially leading to heart attacks or strokes. 

Magnesium may improve lipid levels in people with hypercholesterolemia (high cholesterol). In one study, patients taking one gram of magnesium oxide daily for six weeks saw slight decreases in total and low-density lipoprotein (LDL) cholesterol levels and small increases in high-density lipoprotein (HDL) cholesterol.  

Higher magnesium intake from diet and supplements is also associated with a 31% lower risk of developing metabolic syndrome in healthy young adults. Metabolic syndrome is a cluster of conditions, including high blood pressure, high blood sugar, excess body fat around the waist, and abnormal cholesterol or triglyceride levels, which increase the risk of heart disease, stroke, and type 2 diabetes.

2. Muscle and Bone Health

50-60% of the body's magnesium is stored in the bones (26). Magnesium deficiency increases the activity of osteoclasts, cells responsible for resorbing (breaking down) bone. Data suggest hypomagnesemia may be associated with low bone mass and osteoporosis. Furthermore, clinical research shows oral magnesium increases bone mineral density and decreases bone loss in postmenopausal patients with osteoporosis.

Magnesium helps nerves and muscles communicate properly by regulating electrical activity, ensuring the smooth functioning of the nervous system and muscles (23). When a nerve signal stimulates a muscle, it triggers the release of calcium ions within the muscle cells, initiating the contraction process. As a calcium antagonist, magnesium acts as a muscle relaxant, allowing muscles to contract and relax smoothly. This is why insufficient magnesium can lead to muscle cramps, spasms, and weakness. (37

3. Stress and Anxiety Reduction 

Magnesium is an effective natural remedy for stress and anxiety relief due to its significant impact on the nervous system. Magnesium is involved in modulating the hypothalamic-pituitary-adrenal (HPA) axis, the complex neuroendocrine system that regulates responses to stress, and influencing the transmission of excitatory neurotransmitters – both of which promote calming effects on the nervous system to prevent feelings of stress and anxiety (23). Data show that magnesium deficiency is linked to an increased risk of anxiety disorders; furthermore, a 2017 systematic review found that magnesium supplementation effectively reduced anxiety related to premenstrual syndrome, postpartum anxiety, and generalized anxiety. 

4. Sleep Aid

There is interest in using magnesium supplements for sleep disorders, such as insomnia. Low magnesium levels have been linked to poor sleep quality. Magnesium helps regulate sleep by reducing inflammation and oxidative stress and modulating neurotransmitter activity at NMDA and GABA receptors (34). In a clinical study for elderly patients with primary insomnia, magnesium supplementation increased levels of melatonin, reduced cortisol levels, and improved subjective markers of insomnia, including sleep efficiency, sleep onset latency, and early morning awakenings.

5. Migraine Relief

Migraine is the most common form of disabling primary headache, affecting approximately 12% of Western populations. The pathogenesis of migraine is multifaceted; however, magnesium deficiency is believed to be involved in many aspects of migraine development, including cortical spreading depression, platelet aggregation, the release of substance P, neurotransmitter release, and vasoconstriction. Numerous studies have found that oral magnesium doses between 300-600 mg daily reduce the frequency and severity of migraine headaches. (47

6. Regulating Blood Sugar

Hypomagnesemia has been observed in up to 38% of patients with type 2 diabetes. Low intracellular magnesium causes dysfunction of insulin receptors and enzymes involved in glucose utilization. (2, 12) This results in decreased insulin sensitivity and glucose uptake and higher blood sugar levels. Conversely, a higher dietary magnesium intake is associated with lower fasting insulin concentrations and a reduced risk of developing type 2 diabetes (22).

In clinical studies, oral magnesium improves glycemic control in patients with type 2 diabetes, improves insulin sensitivity, and reduces HbA1c levels in patients with type 2 diabetes and hypomagnesemia. 

How Can You Test Magnesium Levels in the Body?

Serum magnesium is most commonly used to assess magnesium status; however, this correlates poorly with magnesium status because less than 1% of the body's total magnesium is in blood serum (26). Individuals with serum magnesium levels between 0.75-0.85 mmol/L should have additional testing to confirm magnesium status. Red blood cell (RBC) magnesium better reflects body magnesium status than serum magnesium levels. (38)

Depending on the specific test, specialty micronutrient panels measure intracellular and/or extracellular magnesium levels, along with other nutrients that can affect magnesium absorption and utilization by the cells. These panels may be more clinically relevant when you suspect a patient is at risk for multiple nutrient deficiencies. Panel options include Genova Diagnostics' NutrEval and SpectraCell Laboratories' Micronutrient Test

Different Forms of Magnesium Supplements and Their Benefits

There are many types of magnesium supplements, each with unique properties and health benefits.

Magnesium citrate is highly absorbable and is often used to support digestive health. It can help relieve constipation due to its mild laxative effect. Magnesium citrate is also commonly chosen for its bioavailability, making it easier for the body to absorb and utilize. (25)

Magnesium oxide contains a higher percentage of elemental magnesium but has lower bioavailability than other forms. It is commonly used as a laxative and is effective for short-term constipation relief. However, it may cause gastrointestinal discomfort in some individuals.

Magnesium glycinate is a highly absorbable form of magnesium bound to an amino acid called glycine. It is often preferred for its calming effects and is widely used to promote relaxation, improve sleep quality, and reduce anxiety. This form is less likely to cause digestive upset, making it suitable for individuals with sensitive stomachs. (46

Magnesium L-threonate has the unique property of crossing the blood-brain barrier, which means it can enhance brain magnesium levels. It is often promoted for its potential cognitive benefits and is believed to support brain health and memory. (44, 48

Magnesium malate is a highly absorbable form of supplemental magnesium bound to malic acid. It tends to be gentler on the digestive tract, so it is a good option for patients who tend toward digestive upset and diarrhea. By participating in the Krebs cycle, malic acid contributes to the production of cellular energy (ATP), so magnesium malate is often recommended in the context of conditions associated with fatigue and muscle pain. (46

Safety and Considerations When Using Magnesium Therapeutically

Magnesium supplements are generally considered safe for most people when taken as directed. Taking excessive amounts of magnesium supplements can lead to side effects of magnesium toxicity, including diarrhea, nausea, and abdominal cramping. Extremely high doses can be dangerous and lead to irregular heartbeat, low blood pressure, and difficulty breathing. (26

Magnesium supplements can interact with certain medications, such as antibiotics, diuretics, and bisphosphonates (26). Magnesium supplementation may be unsafe for patients with heart block, kidney disease, myasthenia gravis, and bleeding disorders. People taking these medications or with these preexisting health conditions should discuss magnesium supplementation with their healthcare providers to ensure they take a safe magnesium dosage.

[signup]

Summary

Many people are deficient in magnesium, a risk factor for many chronic health issues. Standard and specialty labs can measure your magnesium level, and healthcare providers can guide you in using diet and supplements to optimize magnesium status to prevent and treat diseases, including anxiety, cardiovascular disease, insomnia, migraines, and musculoskeletal disorders.

Magnesium is an essential mineral, serving as a cornerstone of human health by playing a multifaceted role in various physiological processes within the body. Magnesium's importance in maintaining good health is significant. It participates in over 300 enzymatic reactions, impacting everything from energy production to nerve function and muscle contractions. Furthermore, magnesium is a natural calcium blocker, regulating heart rhythm and supporting cardiovascular health. In functional medicine, understanding magnesium's pivotal role has led to a focus on its supplementation, dietary incorporation, and its impact on overall wellness. As we delve deeper, it becomes apparent that ensuring optimal magnesium status is crucial in pursuing optimal health and vitality. (32, 46

[signup]

Historical Context of Magnesium Therapy

The use of magnesium in therapeutic applications has a rich historical context that spans centuries. Its properties have been recognized and utilized by various cultures around the world. In ancient times, magnesium-rich mineral waters were sought after for their beneficial effects. In the 17th and 18th centuries, exploring natural springs and mineral waters became increasingly popular in Europe. In 1695, magnesium sulfate was isolated from the Epsom spring water by Nehemiah Grew. Epsom salt, a magnesium sulfate compound, is still widely used today for various purposes. (16

Since then, magnesium has continued to gain recognition for its importance in human biology and physiology. Magnesium deficiency has been linked to various health conditions, and this knowledge has paved the way for the development of magnesium supplements and therapies in modern medicine to support conditions including muscle cramps, cardiovascular issues, and migraine headaches.

Sources of Magnesium in the Diet

There is a diverse array of natural sources of magnesium, and the body typically absorbs 30-40% of dietary magnesium consumed. In general, foods that are high in fiber are high in magnesium. Examples of magnesium-rich foods include green leafy vegetables, legumes, nuts, seeds, and whole grains. (26

Magnesium Deficiency: Causes and Symptoms

Magnesium deficiency is a prevalent global health concern, with varying rates influenced by factors such as age, gender, diet, and geographical location. The National Health and Nutrition Examination Survey (NHANES) 2005-2006 reported approximately 48% of the U.S. population had insufficient magnesium intake from food sources. (26

Early signs of magnesium deficiency may include loss of appetite, nausea, vomiting, fatigue, and weakness. As the deficiency worsens, numbness, tingling, muscle cramping, abnormal muscle movements, seizures, confusion, and heart arrhythmias can occur. Magnesium deficiency can also disrupt the balance of other electrolytes, causing hypocalcemia (low serum calcium levels) and hypokalemia (low serum potassium levels). Furthermore, magnesium deficiency has been associated with the development of many diseases, including asthma, atherosclerosis, diabetes, hypertension, migraines, and osteoporosis. (26

Causes of low magnesium levels include:

  • Habitually low dietary intake of magnesium
  • Chronic health conditions: gastrointestinal diseases, type 2 diabetes, alcohol dependence
  • Medications: diuretics, proton pump inhibitors, theophylline, digoxin, oral contraceptive pills
  • Chronic stress

The Top 6 Therapeutic Uses of Magnesium

Magnesium powers many functions in our bodies. In this section, we will discuss six ways that magnesium may support health. 

1. Cardiovascular Health

Magnesium plays a crucial role in maintaining optimal cardiovascular health, exerting its influence through various biochemical mechanisms. One of its primary functions is regulating heart rhythm. Magnesium's role in regulating heart rhythm is multifaceted; it influences ion transport, blocks excessive calcium entry into cells, stabilizes cell membranes, and modulates potassium levels. By performing these functions, magnesium helps maintain a steady and coordinated heartbeat. (24

Furthermore, magnesium supports healthy endothelial function. A meta-analysis concluded that taking magnesium for at least six months may improve flow-mediated dilatation, a marker of endothelial function, in patients who are unhealthy, over age 50, or overweight (21). Endothelial cells help regulate blood flow, prevent clot formation, and maintain the flexibility of blood vessels. Magnesium promotes the production of nitric oxide, a molecule that relaxes blood vessels. This relaxation (vasodilation) may help reduce the risk of hypertension, or high blood pressure, a significant cardiovascular risk factor. Magnesium also supports the kidneys in regulating blood pressure by controlling the balance of sodium and potassium in the body. Evidence suggests that hypertensive patients with hypomagnesemia (low serum magnesium levels) usually require higher doses of antihypertensive medications than those with normal magnesium levels. (15)

By supporting endothelial health, magnesium also contributes to the maintenance of healthy arteries, potentially reducing the risk of conditions like atherosclerosis, where plaque builds up in the arteries, narrowing them and potentially leading to heart attacks or strokes. 

Magnesium may help maintain healthy lipid levels in people with hypercholesterolemia (high cholesterol). In one study, patients taking one gram of magnesium oxide daily for six weeks saw slight decreases in total and low-density lipoprotein (LDL) cholesterol levels and small increases in high-density lipoprotein (HDL) cholesterol.  

Higher magnesium intake from diet and supplements is also associated with a 31% lower risk of developing metabolic syndrome in healthy young adults. Metabolic syndrome is a cluster of conditions, including high blood pressure, high blood sugar, excess body fat around the waist, and abnormal cholesterol or triglyceride levels, which increase the risk of heart disease, stroke, and type 2 diabetes.

2. Muscle and Bone Health

50-60% of the body's magnesium is stored in the bones (26). Magnesium deficiency may increase the activity of osteoclasts, cells responsible for resorbing (breaking down) bone. Data suggest hypomagnesemia may be associated with low bone mass and osteoporosis. Furthermore, clinical research shows oral magnesium may support bone mineral density and decrease bone loss in postmenopausal patients with osteoporosis.

Magnesium helps nerves and muscles communicate properly by regulating electrical activity, ensuring the smooth functioning of the nervous system and muscles (23). When a nerve signal stimulates a muscle, it triggers the release of calcium ions within the muscle cells, initiating the contraction process. As a calcium antagonist, magnesium acts as a muscle relaxant, allowing muscles to contract and relax smoothly. This is why insufficient magnesium can lead to muscle cramps, spasms, and weakness. (37

3. Stress and Anxiety Reduction 

Magnesium is considered a natural option for stress and anxiety relief due to its significant impact on the nervous system. Magnesium is involved in modulating the hypothalamic-pituitary-adrenal (HPA) axis, the complex neuroendocrine system that regulates responses to stress, and influencing the transmission of excitatory neurotransmitters – both of which may promote calming effects on the nervous system to help manage feelings of stress and anxiety (23). Data show that magnesium deficiency is linked to an increased risk of anxiety disorders; furthermore, a 2017 systematic review found that magnesium supplementation may help reduce anxiety related to premenstrual syndrome, postpartum anxiety, and generalized anxiety. 

4. Sleep Aid

There is interest in using magnesium supplements for sleep disorders, such as insomnia. Low magnesium levels have been linked to poor sleep quality. Magnesium helps regulate sleep by reducing inflammation and oxidative stress and modulating neurotransmitter activity at NMDA and GABA receptors (34). In a clinical study for elderly patients with primary insomnia, magnesium supplementation increased levels of melatonin, reduced cortisol levels, and improved subjective markers of insomnia, including sleep efficiency, sleep onset latency, and early morning awakenings.

5. Migraine Relief

Migraine is the most common form of disabling primary headache, affecting approximately 12% of Western populations. The pathogenesis of migraine is multifaceted; however, magnesium deficiency is believed to be involved in many aspects of migraine development, including cortical spreading depression, platelet aggregation, the release of substance P, neurotransmitter release, and vasoconstriction. Numerous studies have found that oral magnesium doses between 300-600 mg daily may help reduce the frequency and severity of migraine headaches. (47

6. Regulating Blood Sugar

Hypomagnesemia has been observed in up to 38% of patients with type 2 diabetes. Low intracellular magnesium may cause dysfunction of insulin receptors and enzymes involved in glucose utilization. (2, 12) This may result in decreased insulin sensitivity and glucose uptake and higher blood sugar levels. Conversely, a higher dietary magnesium intake is associated with lower fasting insulin concentrations and a reduced risk of developing type 2 diabetes (22).

In clinical studies, oral magnesium may help improve glycemic control in patients with type 2 diabetes, improve insulin sensitivity, and reduce HbA1c levels in patients with type 2 diabetes and hypomagnesemia. 

How Can You Test Magnesium Levels in the Body?

Serum magnesium is most commonly used to assess magnesium status; however, this correlates poorly with magnesium status because less than 1% of the body's total magnesium is in blood serum (26). Individuals with serum magnesium levels between 0.75-0.85 mmol/L should have additional testing to confirm magnesium status. Red blood cell (RBC) magnesium better reflects body magnesium status than serum magnesium levels. (38)

Depending on the specific test, specialty micronutrient panels measure intracellular and/or extracellular magnesium levels, along with other nutrients that can affect magnesium absorption and utilization by the cells. These panels may be more clinically relevant when you suspect a patient is at risk for multiple nutrient deficiencies. Panel options include Genova Diagnostics' NutrEval and SpectraCell Laboratories' Micronutrient Test

Different Forms of Magnesium Supplements and Their Benefits

There are many types of magnesium supplements, each with unique properties and potential health benefits.

Magnesium citrate is highly absorbable and is often used to support digestive health. It may help relieve constipation due to its mild laxative effect. Magnesium citrate is also commonly chosen for its bioavailability, making it easier for the body to absorb and utilize. (25)

Magnesium oxide contains a higher percentage of elemental magnesium but has lower bioavailability than other forms. It is commonly used as a laxative and may be effective for short-term constipation relief. However, it may cause gastrointestinal discomfort in some individuals.

Magnesium glycinate is a highly absorbable form of magnesium bound to an amino acid called glycine. It is often preferred for its calming effects and is widely used to promote relaxation, improve sleep quality, and reduce anxiety. This form is less likely to cause digestive upset, making it suitable for individuals with sensitive stomachs. (46

Magnesium L-threonate has the unique property of crossing the blood-brain barrier, which means it can enhance brain magnesium levels. It is often promoted for its potential cognitive benefits and is believed to support brain health and memory. (44, 48

Magnesium malate is a highly absorbable form of supplemental magnesium bound to malic acid. It tends to be gentler on the digestive tract, so it is a good option for patients who tend toward digestive upset and diarrhea. By participating in the Krebs cycle, malic acid contributes to the production of cellular energy (ATP), so magnesium malate is often recommended in the context of conditions associated with fatigue and muscle pain. (46

Safety and Considerations When Using Magnesium Therapeutically

Magnesium supplements are generally considered safe for most people when taken as directed. Taking excessive amounts of magnesium supplements can lead to side effects of magnesium toxicity, including diarrhea, nausea, and abdominal cramping. Extremely high doses can be dangerous and lead to irregular heartbeat, low blood pressure, and difficulty breathing. (26

Magnesium supplements can interact with certain medications, such as antibiotics, diuretics, and bisphosphonates (26). Magnesium supplementation may be unsafe for patients with heart block, kidney disease, myasthenia gravis, and bleeding disorders. People taking these medications or with these preexisting health conditions should discuss magnesium supplementation with their healthcare providers to ensure they take a safe magnesium dosage.

[signup]

Summary

Many people may not get enough magnesium, which can be a risk factor for various health issues. Standard and specialty labs can measure your magnesium level, and healthcare providers can guide you in using diet and supplements to optimize magnesium status to support overall health and well-being.

The information in this article is designed for educational purposes only and is not intended to be a substitute for informed medical advice or care. This information should not be used to diagnose or treat any health problems or illnesses without consulting a doctor. Consult with a health care practitioner before relying on any information in this article or on this website.

Learn more

No items found.

Lab Tests in This Article

1. Abbasi, B., Kimiagar, M., Sadeghniiat, K., et al. (2012). The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 17(12), 1161–1169. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703169/

2. Barbagallo, M. (2003). Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Molecular Aspects of Medicine, 24(1-3), 39–52. https://doi.org/10.1016/s0098-2997(02)00090-0

3. Boyle, N., Lawton, C., & Dye, L. (2017). The Effects of Magnesium Supplementation on Subjective Anxiety and Stress—A Systematic Review. Nutrients, 9(5), 429. https://doi.org/10.3390/nu9050429

4. Chua, F. B., Cinco, J. E., & Paz-Pacheco, E. (2017). Efficacy of Magnesium Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Meta-analysis. Journal of the ASEAN Federation of Endocrine Societies, 32(1), 38–45. https://doi.org/10.15605/jafes.032.01.07

5. Cloyd, J. (2023, April 7). Functional Medicine High Cholesterol Protocol. Rupa Health. https://www.rupahealth.com/post/functional-medicine-high-cholesterol-protocol

6. Cloyd, J. (2023, April 10). A Functional Medicine Hypertension Protocol. Rupa Health. https://www.rupahealth.com/post/functional-medicine-hypertension-protocol

7. Cloyd, J. (2023, April 27). Unlocking the Health Benefits of Nitric Oxide: How This Molecule Supports Cardiovascular Health, Exercise Performance, and More. Rupa Health. https://www.rupahealth.com/post/nitric-oxide

8. Cloyd, J. (2023, May 17). A Functional Medicine Constipation Protocol: Testing, Nutrition, and Supplements. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-constipation-protocol-testing-nutrition-and-supplements

9. Cloyd, J. (2023, October 9). Rhythms of the Heart: Demystifying Common Types of Heart Arrhythmia. Rupa Health. https://www.rupahealth.com/post/rhythms-of-the-heart-demystifying-common-types-of-heart-arrhythmia

10. Creedon, K. (2022, March 18). 8 Ways To Prevent Osteoporosis As You Age. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-approach-to-osteoporosis

11. D’Angelo, E. K., Singer, H. A., & Rembold, C. M. (1992). Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+. Journal of Clinical Investigation, 89(6), 1988–1994. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC295901/

12. de Lordes Lima, M., Cruz, T., Pousada, J. C., et al. (1998). The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes. Diabetes Care, 21(5), 682–686. https://doi.org/10.2337/diacare.21.5.682

13. DePorto, T. (2023, January 5). Electrolytes Imbalance: Symptoms & How to Treat It. Rupa Health. https://www.rupahealth.com/post/electrolytes

14. Diorio, B. (2023, March 17). How to Test For Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysfunction. Rupa Health. https://www.rupahealth.com/post/what-is-the-hypothalamic-pituitary-adrenal-hpa-axis

15. Douban, S., Brodsky, M. A., Whang, D. D., et al. (1996). Significance of magnesium in congestive heart failure. American Heart Journal, 132(3), 664–671. https://doi.org/10.1016/s0002-8703(96)90253-7

16. Durlach, J. (2007). Overview of Magnesium Research: History and Current Trends. New Perspectives in Magnesium Research, 3–10. https://doi.org/10.1007/978-1-84628-483-0_1

17. Greenan, S. (2021, December 10). Can't Sleep? Make Sure You're Getting These 3 Micronutrients. Rupa Health. https://www.rupahealth.com/post/functional-medicine-approach-for-optimal-sleep

18. He, K., Liu, K., Daviglus, M. L., et al. (2006). Magnesium intake and incidence of metabolic syndrome among young adults. Circulation, 113(13), 1675–1682. https://doi.org/10.1161/CIRCULATIONAHA.105.588327

19. Henry, E. (2022, February 4). A Functional Medicine Approach to Migraines. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-approach-to-migraines

20. Hoogerbrugge, N., Cobbaert, C., de Heide, L., et al. (1996). Oral physiological magnesium supplementation for 6 weeks with 1 g/d magnesium oxide does not affect increased Lp(a) levels in hypercholesterolaemic subjects. Magnesium Research, 9(2), 129–132. https://pubmed.ncbi.nlm.nih.gov/8878009/

21. Houston, M. (2011). The Role of Magnesium in Hypertension and Cardiovascular Disease. The Journal of Clinical Hypertension, 13(11), 843–847. https://doi.org/10.1111/j.1751-7176.2011.00538.x

22. Hruby, A., Meigs, J. B., O'Donnell, C. J., et al. (2013). Higher Magnesium Intake Reduces Risk of Impaired Glucose and Insulin Metabolism and Progression From Prediabetes to Diabetes in Middle-Aged Americans. Diabetes Care, 37(2), 419–427. https://doi.org/10.2337/dc13-1397

23. Kirkland, A. E., Sarlo, G. L., & Holton, K. F. (2018). The Role of Magnesium in Neurological Disorders. Nutrients, 10(6), 730. https://doi.org/10.3390/nu10060730

24. Kotecha, D. (2016). Magnesium for Atrial Fibrillation, Myth or Magic? Circulation: Arrhythmia and Electrophysiology, 9(9). https://doi.org/10.1161/circep.116.004521

25. Lindberg, J. S., Zobitz, M. M., Poindexter, J. R., et al. (1990). Magnesium bioavailability from magnesium citrate and magnesium oxide. Journal of the American College of Nutrition, 9(1), 48–55. https://doi.org/10.1080/07315724.1990.10720349

26. Magnesium - Fact Sheet for Health Professionals. (2022, June 2). Office of Dietary Supplements. https://ods.od.nih.gov/factsheets/magnesium-HealthProfessional/#h8

27. Magnesium Citrate Solution. Cleveland Clinic. https://my.clevelandclinic.org/health/drugs/20745-magnesium-citrate-solution

28. Maholy, N. (2023, May 23). A Functional Medicine Treatment Protocol for Metabolic Syndrome: Testing, Nutrition, and Supplements. Rupa Health. https://www.rupahealth.com/post/a-functional-medicine-treatment-protocol-for-metabolic-syndrome-testing-nutrition-and-supplements

29. Malic Acid. ScienceDirect. https://www.sciencedirect.com/topics/medicine-and-dentistry/malic-acid

30. Mammoli, F., Castiglioni, S., Parenti, S., et al. (2019). Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D3. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020385

31. Marques, B. C. A. A., Klein, M. R. S. T., da Cunha, M. R., et al. (2020). Effects of Oral Magnesium Supplementation on Vascular Function: A Systematic Review and Meta-analysis of Randomized Controlled Trials. High Blood Pressure & Cardiovascular Prevention: The Official Journal of the Italian Society of Hypertension, 27(1), 19–28. https://doi.org/10.1007/s40292-019-00355-z

32. Mathew, A. A., & Panonnummal, R. (2021). "Magnesium"-the master cation-as a drug—possibilities and evidences. BioMetals, 34(5), 955–986. https://doi.org/10.1007/s10534-021-00328-7

33. Neibling, K. (2023, February 27). Integrative Medicine Treatment for Headaches. Rupa Health. https://www.rupahealth.com/post/integrative-medicine-treatment-for-headaches

34. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnesium Research, 23(4), 158–168. https://doi.org/10.1684/mrh.2010.0220

35. Pham, P.-C., Pham, P. A., Pham, S., et al. (2014). Hypomagnesemia: a clinical perspective. International Journal of Nephrology and Renovascular Disease, 7, 219. https://doi.org/10.2147/ijnrd.s42054

36. Pickering, G., Mazur, A., Trousselard, M., et al. (2020). Magnesium status and stress: The vicious circle concept revisited. Nutrients, 12(12), 3672. https://doi.org/10.3390/nu12123672

37. Potter, J. D., Robertson, S. P., & Johnson, J. D. (1981). Magnesium and the regulation of muscle contraction. Federation Proceedings, 40(12), 2653–2656. https://pubmed.ncbi.nlm.nih.gov/7286246/

38. Razzaque, M. (2018). Magnesium: Are We Consuming Enough? Nutrients, 10(12), 1863. https://doi.org/10.3390/nu10121863

39. Rodriguez-Moran, M., & Guerrero-Romero, F. (2003). Oral Magnesium Supplementation Improves Insulin Sensitivity and Metabolic Control in Type 2 Diabetic Subjects: A randomized double-blind controlled trial. Diabetes Care, 26(4), 1147–1152. https://doi.org/10.2337/diacare.26.4.1147

40. Rude, R. K., & Gruber, H. E. (2004). Magnesium deficiency and osteoporosis: animal and human observations. The Journal of Nutritional Biochemistry, 15(12), 710–716. https://doi.org/10.1016/j.jnutbio.2004.08.001

41. Song, Y., He, K., Levitan, E. B., et al. (2006). Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabetic Medicine: A Journal of the British Diabetic Association, 23(10), 1050–1056. https://doi.org/10.1111/j.1464-5491.2006.01852.x

42. Stendig-Lindberg, G., Tepper, R., & Leichter, I. (1993). Trabecular bone density in a two year controlled trial of peroral magnesium in osteoporosis. Magnesium Research, 6(2), 155–163. https://pubmed.ncbi.nlm.nih.gov/8274361/

43. Sweetnich, J. (2023, March 13). Are Your Supplements Causing Diarrhea? Rupa Health. https://www.rupahealth.com/post/are-your-supplements-causing-diarrhea

44. Sweetnich, J. (2023, May 26). Integrative Treatment Options for Neurological Diagnosis: Specialty Testing, Nutrition, Supplements. Rupa Health. https://www.rupahealth.com/post/4-neurological-conditions-commonly-treated-with-integrative-medicine

45. ter Braake, A. D., Shanahan, C. M., & de Baaij, J. H. F. (2017). Magnesium Counteracts Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(8), 1431–1445. https://doi.org/10.1161/atvbaha.117.309182

46. Vazquez, K. (2022, September 9). 8 Types of Magnesium and How to Use Them. Rupa Health. https://www.rupahealth.com/post/magnesium-101

47. Yablon, L. A., & Mauskop, A. (2011). Magnesium in headache (R. Vink & M. Nechifor, Eds.). PubMed; University of Adelaide Press. https://www.ncbi.nlm.nih.gov/books/NBK507271/

48. Zhang, C., Hu, Q., Li, S., et al. (2022). A Magtein®, Magnesium L-Threonate, -Based Formula Improves Brain Cognitive Functions in Healthy Chinese Adults. Nutrients, 14(24), 5235. https://doi.org/10.3390/nu14245235

Order from 30+ labs in 20 seconds (DUTCH, Mosaic, Genova & More!)
We make ordering quick and painless — and best of all, it's free for practitioners.

Latest Articles

View more on Nutrition
Subscribe to the magazine for expert-written articles straight to your inbox
Join the thousands of savvy readers who get root cause medicine articles written by doctors in their inbox every week!
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Are you a healthcare practitioner?
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Subscribe to the Magazine for free to keep reading!
Subscribe for free to keep reading, If you are already subscribed, enter your email address to log back in.
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Are you a healthcare practitioner?
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Trusted Source
Rupa Health
Medical Education Platform
Visit Source
Visit Source
American Cancer Society
Foundation for Cancer Research
Visit Source
Visit Source
National Library of Medicine
Government Authority
Visit Source
Visit Source
Journal of The American College of Radiology
Peer Reviewed Journal
Visit Source
Visit Source
National Cancer Institute
Government Authority
Visit Source
Visit Source
World Health Organization (WHO)
Government Authority
Visit Source
Visit Source
The Journal of Pediatrics
Peer Reviewed Journal
Visit Source
Visit Source
CDC
Government Authority
Visit Source
Visit Source
Office of Dietary Supplements
Government Authority
Visit Source
Visit Source
National Heart Lung and Blood Institute
Government Authority
Visit Source
Visit Source
National Institutes of Health
Government Authority
Visit Source
Visit Source
Clinical Infectious Diseases
Peer Reviewed Journal
Visit Source
Visit Source
Brain
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Rheumatology
Peer Reviewed Journal
Visit Source
Visit Source
Journal of the National Cancer Institute (JNCI)
Peer Reviewed Journal
Visit Source
Visit Source
Journal of Cardiovascular Magnetic Resonance
Peer Reviewed Journal
Visit Source
Visit Source
Hepatology
Peer Reviewed Journal
Visit Source
Visit Source
The American Journal of Clinical Nutrition
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Bone and Joint Surgery
Peer Reviewed Journal
Visit Source
Visit Source
Kidney International
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Allergy and Clinical Immunology
Peer Reviewed Journal
Visit Source
Visit Source
Annals of Surgery
Peer Reviewed Journal
Visit Source
Visit Source
Chest
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Neurology, Neurosurgery & Psychiatry
Peer Reviewed Journal
Visit Source
Visit Source
Blood
Peer Reviewed Journal
Visit Source
Visit Source
Gastroenterology
Peer Reviewed Journal
Visit Source
Visit Source
The American Journal of Respiratory and Critical Care Medicine
Peer Reviewed Journal
Visit Source
Visit Source
The American Journal of Psychiatry
Peer Reviewed Journal
Visit Source
Visit Source
Diabetes Care
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of the American College of Cardiology (JACC)
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Clinical Oncology (JCO)
Peer Reviewed Journal
Visit Source
Visit Source
Journal of Clinical Investigation (JCI)
Peer Reviewed Journal
Visit Source
Visit Source
Circulation
Peer Reviewed Journal
Visit Source
Visit Source
JAMA Internal Medicine
Peer Reviewed Journal
Visit Source
Visit Source
PLOS Medicine
Peer Reviewed Journal
Visit Source
Visit Source
Annals of Internal Medicine
Peer Reviewed Journal
Visit Source
Visit Source
Nature Medicine
Peer Reviewed Journal
Visit Source
Visit Source
The BMJ (British Medical Journal)
Peer Reviewed Journal
Visit Source
Visit Source
The Lancet
Peer Reviewed Journal
Visit Source
Visit Source
Journal of the American Medical Association (JAMA)
Peer Reviewed Journal
Visit Source
Visit Source
Pubmed
Comprehensive biomedical database
Visit Source
Visit Source
Harvard
Educational/Medical Institution
Visit Source
Visit Source
Cleveland Clinic
Educational/Medical Institution
Visit Source
Visit Source
Mayo Clinic
Educational/Medical Institution
Visit Source
Visit Source
The New England Journal of Medicine (NEJM)
Peer Reviewed Journal
Visit Source
Visit Source
Johns Hopkins
Educational/Medical Institution
Visit Source
Visit Source

Hey practitioners! 👋 Join Dr. Chris Magryta and Dr. Erik Lundquist for a comprehensive 6-week course on evaluating functional medicine labs from two perspectives: adult and pediatric. In this course, you’ll explore the convergence of lab results across different diseases and age groups, understanding how human lab values vary on a continuum influenced by age, genetics, and time. Register Here! Register Here.

Hey practitioners! 👋 Join Dr. Terry Wahls for a 3-week bootcamp on integrating functional medicine into conventional practice, focusing on complex cases like Multiple Sclerosis. Learn to analyze labs through a functional lens, perform nutrition-focused physical exams, and develop personalized care strategies. Register Here.