High-density lipoprotein (HDL) cholesterol is an important component of cardiovascular health, often referred to as "good cholesterol." HDL cholesterol helps transport excess cholesterol away from the arteries to the liver, where it can be processed and removed from the body. This process may help reduce the risk of cholesterol buildup in the arteries. Root cause medicine focuses on addressing underlying health factors that can impact HDL cholesterol levels. This article explores various strategies that may help support healthy HDL cholesterol levels and overall cardiovascular wellness. Understanding and embracing this approach can empower individuals to support their heart health.
[signup]
What Is HDL Cholesterol?
Lipoproteins are particles made of fats (lipids) and proteins that carry cholesterol through the body. High-density lipoprotein (HDL) is a type of lipoprotein that may have heart-supportive properties. HDL cholesterol (HDL-C) refers to the amount of cholesterol carried by HDL particles in the bloodstream.
One of the primary functions of HDL is to transport cholesterol from the body's tissues and arteries back to the liver for processing and removal from the body. This process is known as reverse cholesterol transport and may help prevent the buildup of cholesterol in the arteries. HDL-C is often considered "good cholesterol" for this reason. HDL has anti-inflammatory and anti-atherogenic properties. It may help prevent the oxidation of LDL cholesterol (LDL-C), which can contribute to plaque formation in the arteries. Additionally, HDL has been shown to have vasodilatory effects, which may support blood vessel function. (7, 14)
The ideal range for HDL-C is 60-80 mg/dL. HDL-C less than 40 mg/dL for men and less than 50 mg/dL for women are considered lower than desirable. HDL-C is inversely correlated to cardiovascular risk. Each 1 mg/dL increase in HDL-C is associated with a 2-3% risk reduction in the risk of cardiovascular death. Conversely, low levels of HDL-C are strong predictors of atherosclerosis, cardiovascular disease, and mortality. (14, 26, 36)
Dietary Factors Influencing HDL Cholesterol
A good place to start is diet if you need to increase HDL-C levels. Consuming foods rich in healthy fats has been associated with elevated HDL levels. Olive oil is rich in monounsaturated fats. A large analysis of over 30 studies and over 800,000 participants found that higher intakes of olive oil correlated to reduced risk of all-cause mortality, cardiovascular events, and stroke. Studies have found that olive oil consumption may support increased HDL-C levels and enhance HDL's anti-inflammatory and antioxidant properties. (8, 23, 32, 33)
Studies suggest that people eating high-carbohydrate and low-fat diets tend to have lower serum HDL-C levels. Conversely, low-carbohydrate and high-fat diets may support increased HDL-C. In one randomized trial, patients with type 2 diabetes were assigned to either a low-carbohydrate or high-carbohydrate diet for 12 months. The results indicated that the low-carbohydrate diet results in superior outcomes for blood sugar control, triglyceride reduction, and HDL-C elevation. In another study, people following a high-fat/low-carb diet had more favorable changes in cardiovascular biomarkers, such as reductions in inflammation and triglycerides and increases in HDL-C.
The Mediterranean diet, characterized by a high intake of fruits, vegetables, whole grains, nuts, and olive oil, coupled with moderate consumption of fish and lean proteins, is positively associated with improved HDL markers by influencing HDL particle functionality, oxidation, composition, and size (11).
The Role of Physical Activity
Studies consistently demonstrate that exercise training interventions may lead to a reduction in body fat, improved lipid profiles, and lower blood pressure, in addition to positively affecting glycemic control and insulin signaling, collectively supporting cardiovascular health. (10)
Aerobic exercise, characterized by activities like jogging, cycling, and swimming, is particularly effective in influencing blood lipid metabolism. This exercise may support increased HDL-C by enhancing the concentration and activity of lipoprotein lipase (LPL) in skeletal muscles, facilitating lipid transfer, decomposition, and excretion. Aerobic exercise may help raise HDL-C levels and reduce fasting and postprandial triglycerides, total cholesterol, and LDL-C. (10)
Research indicates that gender differences play a role in the response to exercise, with women benefiting more from low-to-moderate-intensity aerobic exercise, while men may require higher intensity for optimal effects. The response of lipoprotein profiles to exercise is also influenced by factors such as exercise volume and duration and the individual's age. (10)
The Physical Activity Guidelines for Americans recommend adults engage in moderate-intensity aerobic training for at least 150 to 300 minutes, or vigorous-intensity aerobic activity for 75 minutes, per week to achieve health benefits. Additionally, adults should do muscle-strengthening activities at least twice weekly for additional health benefits. (43)
Weight Management and HDL Cholesterol
When people who are overweight or obese lose weight, we observe that HDL-C levels may rise. This improvement is attributed to various mechanisms, including enhanced lipid metabolism, reduced inflammation, and improved insulin sensitivity.
One study examined HDL-C levels in more than 3,000 Japanese adults who were overweight or obese following a lifestyle modification program for one year. Researchers found that losing just 1-3% of body weight significantly increases HDL-C. Other parameters that influence cardiovascular well-being were also optimized, including triglycerides, LDL-C, blood sugar, and blood pressure. (28)
The positive effects of weight loss on HDL-C occur independently from how weight loss occurs. HDL-C may rise when weight loss is achieved through diet, exercise, weight loss surgery, or a combination of these.
Managing Stress for Higher HDL Levels
Psychological stress has been implicated in reducing HDL-C levels through a mechanism involving inflammation. Psychological stress can trigger the release of inflammatory cytokines in the body. These cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), are key mediators of inflammation. When the body experiences stress, the activation of the sympathetic nervous system and the release of stress hormones, such as cortisol, contribute to an inflammatory state. This systemic inflammation, in turn, has been associated with decreased HDL-C levels. Studies have demonstrated a correlation between heightened stress levels and increased inflammatory markers, providing a potential link to the subsequent reduction in HDL-C. The inflammatory response is thought to impact the metabolism of lipoproteins, including HDL, leading to alterations in their composition and functionality. (1, 9)
In light of the connection between chronic stress and diminished HDL levels, adopting stress-reduction techniques becomes crucial for maintaining cardiovascular health. Mindfulness and meditation practices have shown promise in alleviating chronic stress, which may positively impact HDL cholesterol. These techniques promote relaxation, reduce sympathetic nervous system activity, and may contribute to improved lipid profiles.
The Importance of Sleep in Regulating HDL Cholesterol
Research suggests that insufficient or poor-quality sleep is associated with adverse changes in lipid profiles, including lower levels of HDL-C. This connection is demonstrated by the fact that a large percentage of people with sleep apnea also have dyslipidemia, characterized by high levels of total cholesterol, LDL-C, and triglycerides and low levels of HDL-C.
Researchers are still working to understand exactly how sleep affects lipid profiles. Some theories include that interrupted sleep leads to hormonal imbalances or changes in liver enzymes, which can exacerbate dyslipidemia. (39)
Sleep has been identified as one of "Life's Essential 8" for improving and maintaining cardiovascular health. Adults need 7-9 hours of sleep each night, and younger populations require more than this. Patients who are getting inadequate sleep should start by cleaning up their sleep hygiene:
- Turn off screens and dim lights at night
- Start a nighttime wind-down routine
- Create a calm bedroom environment by turning down the temperature, removing electronic devices, and adding black-out curtains
If sleep is still an issue when following these sleep hygiene tips, it is recommended to be evaluated by a healthcare professional for sleep disorders that may interfere with the ability to get quality sleep.
Supplementation and HDL Cholesterol
Several supplements have been investigated for their potential role in supporting healthy HDL-C levels.
Not only do omega-3 fatty acids, most commonly found in fish oil supplements, support arterial health and endothelial functioning, but some research shows promise in their abilities to support healthy HDL-C levels.
Niacin (vitamin B3) is a water-soluble vitamin that is converted into its cofactor forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NADP is required to synthesize cholesterol, which is why niacin can be taken to support healthy HDL-C levels. While niacin has demonstrated efficacy in raising HDL, its use should be approached cautiously due to potential side effects, including flushing and liver toxicity, when taken in high doses.
Anthocyanins are a class of antioxidants found in red and purple produce, such as berries, grapes, red cabbage, and eggplant. Anthocyanins may help combat inflammation and support healthy HDL-C levels.
Monitoring Progress and Adjusting Strategies
Regular monitoring of HDL-C levels through blood tests is important for assessing the effectiveness of lifestyle changes and maintaining optimal cardiovascular health. Periodic screenings provide valuable insights into the impact of dietary modifications, physical activity, and potential supplementation on HDL composition and cholesterol levels. Changes in HDL-C can be observed in as little as 12 weeks after implementing effective interventions.
Upon receiving feedback from labwork, individuals can adjust their strategies to address specific areas of concern with the guidance of their doctor. If cholesterol levels remain suboptimal, healthcare professionals may offer tailored recommendations, such as refining dietary choices, modifying exercise routines, adjusting supplement regimens, or prescribing pharmaceutical medications. Collaboration between individuals and healthcare providers is essential for personalized interventions that align with overall health goals.
[signup]
Key Takeaways
Supporting healthy HDL cholesterol through a root cause medicine approach involves a multifaceted strategy addressing diet, exercise, stress management, and sleep hygiene. Embracing this holistic approach, individuals can optimize their HDL-C levels. The synergy of these lifestyle factors creates a comprehensive foundation for sustaining positive changes in lipid profiles and supporting long-term cardiovascular health.