With the myriad of nutrition advice available, it can be overwhelming to find accurate, trustworthy information, and it can be difficult to know where to focus to optimize overall health. As the standard American diet includes more processed and refined foods, we lose much of the nutrient density of whole, real foods, including vitamins, minerals, and other micronutrients. B vitamins are found in many whole, real foods and can become deficient with poor diet quality.
They are water-soluble, meaning the body is able to excrete excess B vitamins in the urine. This group called B vitamins includes eight different types, each with its own role and function in the body. From energy metabolism to neurological function, B vitamins are essential nutrients that play many integral roles in our overall health and well-being. This guide will provide clarity on the different types of B vitamins, giving you evidence-based information to empower both patients and practitioners to optimize their nutrition status with B vitamins.
[signup]
Vitamin B1 (Thiamine)
Vitamin B1 is also known as thiamine. It is imperative for energy metabolism. Thiamine acts as a cofactor in many key biochemical reactions, including the metabolism of carbohydrates, fats, and proteins into energy to be used by cells and organs throughout the body.
In the main metabolic cycle of the body, thiamine is required to convert pyruvate to acetyl-CoA to make adenosine triphosphate (ATP), our primary energy source. It also is required for nerve function, muscle contraction, and neurotransmitter formation.
Thiamine deficiency can be life-threatening, in a condition called beriberi. Symptoms include weakness, fatigue, nerve damage, heart abnormalities, and cognitive impairments. In severe cases, beriberi can cause heart failure or Wernicke-Korsakoff syndrome, an irreversible neurological complication with confusion, memory loss, and coordination problems.
Thiamine is found in many foods like nuts, legumes, whole grains, and fortified cereals. The Recommended Dietary Allowance (RDA) for thiamine ranges from 1.1 to 1.2 milligrams per day or higher, depending on age, gender, and other factors. Thiamine supplementation may be necessary for patients who have increased thiamine needs, like malabsorption, alcoholism, or the use of certain medications. Thiamine supplementation is usually safe, but it is generally important to discuss the use of any vitamin or mineral supplement with your healthcare provider.
Vitamin B2 (Riboflavin)
Vitamin B2 is also known as riboflavin, and it plays a number of vital roles in the body. It is a cofactor in many oxidative reactions within the body, acting as an antioxidant. Several studies have demonstrated its role in preventing some types of cancers. It is also important in neurological function, reducing the risk of neurodegenerative disorders, and also helping prevent migraine headaches. Riboflavin is fundamental to maintaining healthy skin and eyes. It aids in the production of collagen and other proteins essential for skin structure and wound healing. It also helps protect the eyes from oxidative damage.
Food sources of riboflavin are fortified cereals, dairy products, eggs, lean meats, and leafy green vegetables. The RDA for riboflavin also varies by age, gender, and other health factors, usually ranging from 0.9 to 1.3 milligrams per day for healthy adults.
Riboflavin deficiency can cause serious problems, but it is rare in developed countries, given the varied dietary sources. Low levels of riboflavin might occur in those with significant dietary restrictions, those who abuse alcohol, and other conditions of malabsorption. One condition of riboflavin deficiency is called ariboflavinosis, and it causes blurred vision, skin irritation, cracked lips, and inflammation of the tongue.
Supplementation with riboflavin is necessary if deficiency is present and also in states of increased vitamin and mineral needs. While it is necessary to discuss any vitamin or mineral supplement with your healthcare provider, excess riboflavin is rarely dangerous, since excess amounts are simply excreted as urine waste.
Vitamin B3 (Niacin)
Vitamin B3 is also called niacin. Of the B vitamins, their roles are some of the most diverse. Niacin functions in energy production, cholesterol reduction, DNA repair, skin health promotion, cancer risk reduction, and more. It is required to make nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), both of which are coenzymes involved in a number of cellular processes, like energy metabolism and DNA repair. Niacinamide is a form of vitamin B3 that is sometimes used in the treatment of acne. Niacin has been used to lower cholesterol fractions. Some evidence shows niacin may reduce undesirable low-density lipoprotein cholesterol (LDL-C) and triglycerides and increase advantageous high-density lipoprotein cholesterol (HDL-C).
One of the main conditions of niacin deficiency is pellagra, known to cause the "4 Ds": diarrhea, dermatitis, dementia, and even death if not untreated. However, like riboflavin, niacin is found in many food sources common in our diets. You can get niacin from poultry, fish, whole grains, nuts, and legumes. The body can actually make niacin from the amino acid tryptophan, but it can’t make enough to meet the full metabolic needs.
The RDA of niacin depends on age, gender, and other health factors, usually in the range of 14 to 16 milligrams per day for adults. Niacin supplementation can be beneficial, and it is sometimes used to improve cholesterol levels. However, high doses are known to cause adverse effects, including flushing, passing out, and liver damage. It is not recommended to take a niacin supplement without first consulting your healthcare provider.
Vitamin B5 (Pantothenic Acid)
Vitamin B5 is also known as pantothenic acid. It is important in a number of physiologic processes including fatty acid and stress hormone synthesis. Pantothenic acid is a precursor to coenzyme A, which is necessary for the formation of fatty acids, cholesterol, and steroid hormones, like adrenal hormones, which regulate the body's stress response. It also plays an important role in skin health by regulating cell growth, repair, and regeneration in hair follicles.
Pantothenic acid is found in a variety of foods, including meats, poultry, fish, eggs, dairy, whole grains, and legumes. The RDA for pantothenic acid is around 5 milligrams per day for healthy adults, although it does vary with life cycle factors. Pantothenic acid deficiency is very uncommon, as a result of the variety of dietary sources. If it does occur, it can cause fatigue, irritability, numbness, tingling, and gastrointestinal upset.
Individual pantothenic acid supplements are not commonly used, mainly in patients with severe dietary restrictions or other health problems. However, B-complex supplements are very widely used, which include pantothenic acid in the combination of B vitamins.
Vitamin B6 (Pyridoxine)
Vitamin B6, which is pyridoxine, plays a crucial role in the synthesis of neurotransmitters and the metabolism of amino acids. In addition to its function as a cofactor in the formation of non-essential amino acids, pyridoxine is also required for the conversion of tryptophan to serotonin and the formation of dopamine, norepinephrine, and gamma-aminobutyric acid (GABA), all neurotransmitters critical for mood regulation and cognition. Pyridoxine is a required cofactor in a number of pathways that break down glucose, so many studies have considered it as a part of the treatment of type 2 diabetes.
Pyridoxine also is integral in the synthesis of heme, which is necessary for the production of hemoglobin. As a result, vitamin B6 is essential in treating (and preventing) some anemias. Also, owing to its known neurological implications, pyridoxine supplementation has been studied as a preventative measure of age-related cognitive decline. Adequate intake of pyridoxine is thought to improve cognition, reduce the risk of neurodegenerative disorders, and prevent neuropathy. More research is needed to better make these associations and to establish the optimal dose and formulation.
As it is central in neurotransmitter regulation, a deficiency of pyridoxine often causes neuropsychiatric symptoms, like irritability, confusion, depression, and peripheral neuropathy. Like vitamins B2 and B5, vitamin B6 is found in many foods, making deficiency unlikely. Food sources include fish, poultry, pork, garbanzo beans, potatoes, bananas, and fortified cereals. The RDA of vitamin B6 usually ranges from 1.3 to 1.7 milligrams per day for healthy adults.
Vitamin B7 (Biotin)
Biotin is vitamin B7, and it is well-known for its role in the health of hair, skin, and nails. Less commonly discussed is its role in gene regulation. Biotin is required to make keratin, the structural protein that forms the foundation of hair, nails, and skin. Having enough biotin is necessary to promote hair growth, strengthen nails, and maintain skin integrity. Biotin also plays a role in fatty acid synthesis, and fatty acids are also important in providing moisture to the skin.
Biotin is also a required cofactor in many metabolic pathways, like gluconeogenesis, fatty acid synthesis, and amino acid metabolism. Its role in gene regulation is through transcription factor modulation, which controls genes involved in cellular growth, development, and regeneration.
Biotin can be found in egg yolks, organ meats, dairy products, nuts, and seeds. The RDA for biotin is 30 micrograms per day for healthy adults. Like several other B vitamins, biotin deficiency is uncommon because it is found in a wide variety of foods. If deficiency is present, symptoms may include hair loss, brittle nails, and dermatitis. Biotin supplements are very commonly taken for the treatment or prevention of many dermatological concerns. From hair loss to brittle nails, data suggests biotin supplementation has some efficacy in promoting hair growth and nail quality. More research is needed to establish the optimal dose and formulation of proper supplementation.
Vitamin B9 (Folate)
Vitamin B9 is folate, and it is a crucial B vitamin for all life stages. It is vital for DNA synthesis, cell division, and the prevention of neural tube defects in pregnancy. Folate is required to form nucleotides, which are the building blocks of DNA and RNA. Folate also is required for cell division cell growth tissue repair and regeneration.
Folate is well known for its imperativeness in embryonic and fetal development. It is essential for the closure of the neural tube closure, which is required to form the brain and spinal cord in utero. Adequate folate intake, especially in the preconception period and early in the first trimester of pregnancy, reduces the risk of neural tube defects, like spina bifida and anencephaly.
Folate can be found in leafy green vegetables, citrus fruits, fortified grains, legumes, and animal liver. The RDA for folate varies by age, gender, health status, and life stage, as there are notably higher requirements during pregnancy and lactation. In addition to neural tube defects during pregnancy, folate deficiency can also predispose to megaloblastic anemia and impaired DNA synthesis.
Folic acid and folate are not exactly the same. Folate is the form of the vitamin obtained naturally from food. Folic acid, on the other hand, is the synthetic form of vitamin B9 used in supplements and food fortification, as it is more shelf-stable over time. There are some variations in different people’s ability to metabolize folic acid, so natural food sources of folate are preferred. However, all pregnant patients or patients who could become pregnant are recommended to take a folic acid supplement. Others with malabsorption syndromes or conditions with increased vitamin B9 requirements may benefit from supplementation as well.
Vitamin B12 (Cobalamin)
Vitamin B12, also known as cobalamin, is essential to many neurologic and hematologic functions. It is required to maintain the myelin sheath, which surrounds nerve fibers and facilitates nerve impulse transmission. Vitamin B12 is also part of the synthesis of DNA and RNA, especially in cells with rapid turnover rates, like red blood cells. Vitamin B12 deficiency can cause irreversible neurological abnormalities and megaloblastic anemia.
Vitamin B12 is found in a number of foods, like meats, poultry, fish, eggs, dairy products, fortified foods, and nutritional yeast. The RDA for vitamin B12 is about 2.4 micrograms per day for healthy adults. Those who follow a vegan diet are at increased risk for vitamin B12 deficiency, as animal products are the main sources of vitamin B12. This can be easily prevented by including fortified foods within the vegan diet, like nut milk, fortified cereals, and nutritional yeast.
Vitamin B12 deficiency is commonly seen, specifically in patients with malabsorptive disorders, poor diet, or in patients with age. Deficiency in B12 often manifests with fatigue, weakness, paresthesias of the extremities, difficulty walking, cognitive impairments, and megaloblastic anemia. Individuals at risk of deficiency include older adults, individuals with gastrointestinal disorders affecting nutrient absorption, and strict vegans.
Supplements of B12 are often taken for energy and stamina. They come in oral and injectable forms, each indicated for various causes of deficiency. Ensuring adequate intake is vital for its role in nerve function and red blood cell formation.
Integrating B Vitamins into Clinical Practice
In light of the many health implications of B vitamins, healthcare practitioners play a crucial role in diagnosing and addressing B vitamin deficiencies in their patients. Utilizing medical history-taking, physical examinations, and laboratory tests such as serum levels of specific B vitamins and relevant biomarkers helps pinpoint patients who are at risk for B vitamin deficiencies.
Developing personalized nutrition plans for B vitamin deficiencies is essential to identify the root cause and optimize vitamin status. Emphasizing a balanced diet rich in B vitamin-containing foods such as whole grains, lean meats, poultry, fish, dairy products, legumes, nuts, seeds, fruits, and vegetables can help meet nutritional needs.
When B vitamin supplementation is indicated, it should be done under the guidance of a healthcare professional, who can formulate a personalized nutrition plan,
Certain populations, such as older adults, vegetarians, vegans, individuals with gastrointestinal disorders, and those taking medications that interfere with B vitamin absorption or metabolism, may be at increased risk of deficiency. Healthcare practitioners should prioritize proactive screening, education, and targeted interventions for these at-risk groups to prevent and address deficiencies effectively.
In conclusion, healthcare practitioners can enhance patient care by implementing comprehensive strategies to assess for B vitamin deficiencies, integrate holistic dietary advice, and personalized nutrition plans. By adopting a patient-centered approach and considering individual needs and circumstances, practitioners can optimize nutritional status, promote health, and mitigate the risk of deficiency-related complications.
[signup]
Key Takeaways
B vitamins play a number of crucial roles in the body. All types of B vitamins are found in many whole, real foods. As the standard American diet becomes increasingly processed, B vitamins are more likely to become deficient with poor diet quality. They are water-soluble, meaning the body is able to excrete excess B vitamins in the urine, so in many instances, supplementing B vitamins does not lead to toxicity. However, starting any vitamin or mineral supplement should first be discussed with your healthcare provider. When planning a healthy, varied diet, ensure your diet is rich in B vitamins to promote overall health and well-being.