Research Studies
|
May 30, 2024

Unseen Invaders: Microplastics in Our Bodies

Written By
Medically Reviewed by
Updated On
December 13, 2024

In the intimate world of our homes, our beloved dogs share more than just our companyβ€”they're also exposed to the same environmental pollutants, including microplastics. By examining the presence of microplastics and their potential effects on the reproductive systems of dogs, researchers can gain valuable insights that may reveal significant parallels to human health.

A recent observational and analytical study published in ToxSci has shed light on this invisible invasion, revealing concerning details about their presence and impact, and advocating for better environmental protections.

[signup]

The Study At A Glance

Researchers aimed to detect and measure microplastics in the testes of dogs and humans using a method called Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). This technique heats samples to break them down and then identifies the tiny plastic particles.

They collected testicular tissues from 47 dogs during routine neutering surgeries at local veterinary clinics in New Mexico. The dogs ranged in age from 1 to 10 years and included various breeds for a diverse sample. Additionally, they obtained 23 human testis samples from the New Mexico Office of the Medical Investigator, with donors aged between 16 and 88 years.Β 

These human samples were part of routinely collected specimens from 2016. The researchers carefully analyzed these samples to identify the types and amounts of microplastics present. By comparing the results from dogs and humans, they could assess how widespread and significant microplastic contamination is in living organisms.

Key Findings

The key findings of this study are:

  • Presence of Microplastics: Microplastics were found in every sample of testes from both dogs and humans.
  • Types of Plastics: The study detected various types of plastics, including PE (polyethylene), PVC (polyvinyl chloride), and PET (polyethylene terephthalate).
  • Levels of Microplastics: The levels of microplastics varied among the samples. Human testes had nearly three times more total microplastic levels than canine tissues.
  • Species Comparison: Both dogs and humans exhibited similar proportions of major polymer types, with PE being the most common.
  • Correlation with Organ Weights: There was a negative correlation between specific polymers like PVC and PET and the normalized weight of the testes, suggesting that higher microplastic levels may be associated with lower organ weights.

The Significance Of These Findings

These findings are important because they highlight the extensive contamination of microplastics, which raises several major concerns, including:

  • Reproductive Health: The study found that microplastics are linked to lower sperm counts and smaller reproductive organs. This suggests that these particles could harm fertility and overall reproductive health, affecting future generations.
  • Impact on Organ Size: Higher levels of certain plastics, like PVC and PET, were associated with smaller testes in both dogs and humans, indicating a potential negative effect on organ development.
  • Health Risks: A 2024 study showed that microplastics are not just in our reproductive organs; they can be found throughout our bodies. Over time, these tiny particles can build up and potentially harm various aspects of our health. This is because the chemicals in microplastics can be toxic and may interfere with normal cellular functions. For example, they can disrupt our immune system, induce carcinogenesis, interfere with development, and even damage tissues like the brain and tissues of the digestive system.‍
  • Environmental Impact: A 2022 study showed that the presence of microplastics in our bodies reflects the broader issue of environmental pollution. These particles come from everyday items like plastic bags, bottles, and synthetic clothing, which break down and enter our ecosystems.‍
  • Urgent Need for Action: Understanding these findings can help us make better choices to protect our health and the environment. Reducing plastic use, supporting recycling efforts, and advocating for stricter regulations on plastic production are crucial steps we can take to address this issue.

Limitations of the Study

  • Limited Sample Size: The study examined a small number of dogs (47) and humans (23), which might not fully represent the larger population.
  • Geographic Limitation: Samples were only taken from New Mexico, so the findings might not be applicable everywhere.
  • Differences between Species used: Comparing dogs to humans has its challenges because their bodies work differently, which might affect the results.
  • Older Samples: The human samples were from 2016, which means they might not reflect the current levels of microplastics.
  • Unknown Exposure Sources: The study didn't identify where the microplastics came from, making it difficult to know the sources of contamination.
  • Variety Of Plastics And Their Effects: While various plastics were found, the study didn't investigate how different types of plastics might impact health in different ways.
  • Short-Term Perspective: The research focused on the immediate presence of microplastics, not on the potential long-term health effects.
  • Other Influencing Factors: The study didn't account for all possible factors like diet and lifestyle, which could affect the amount of microplastics in the samples.

Sources Of MicroplasticsΒ 

It highlights various contributors to microplastic pollution, including cosmetics, synthetic clothing, industrial processes, air, plastic waste, artificial turfs, drinking water, and plastic teabags.
  • Cosmetics: Many beauty products, such as exfoliating scrubs and toothpaste, contain tiny plastic beads.
  • Synthetic Clothing: Clothes made from materials like polyester shed small plastic fibers when washed.
  • Industrial Processes: Factories and manufacturing plants often release microplastics into the environment during production.
  • Air: Microplastics can become airborne and be inhaled, coming from dust and pollution.
  • Plastic Waste: As plastic items break down, they create smaller plastic particles that can end up in soil and water bodies.
  • Artificial Turfs: Sports fields with artificial turf can shed small plastic particles, which get carried away by wind or rain.Β 
  • Drinking Water: Microplastics can be found in both tap and bottled water, as they can enter water supplies from various sources. They can also be found in bodies of water.
  • Plastic Teabags: Some teabags are made from plastic and can release microplastics into your tea when steeped in hot water.

Tips On How To Reduce Personal Microplastic Exposure

  • Use Less Plastic: Avoid single-use plastic items like straws, bags, and bottles.
  • Choose Natural Materials: Opt for clothing and products made from natural fibers like cotton or wool instead of synthetic materials.
  • Filter Tap Water: Use a water filter to reduce microplastics in your drinking water.
  • Avoid Plastic-Packaged Food: Choose fresh, unpackaged food whenever possible.
  • Be Careful with Cosmetics: Check labels and avoid products with "polyethylene" or "polypropylene" ingredients.
  • Support Environmental Initiatives: Participate in or support efforts aimed at reducing plastic waste and promoting recycling.

[signup]

Key Takeaways

  • The study revealed the widespread contamination of these tiny particles in our environment and bodies.
  • Key findings indicate that microplastics are linked to lower sperm counts and smaller reproductive organs, with humans showing nearly three times more microplastics than dogs.
  • To address this issue, it is important to raise awareness about microplastic sources, support policies to reduce plastic use and improve waste management, and help individuals minimize exposure by reducing plastic use and supporting recycling efforts.

In the intimate world of our homes, our beloved dogs share more than just our companyβ€”they're also exposed to the same environmental pollutants, including microplastics. By examining the presence of microplastics and their potential effects on the reproductive systems of dogs, researchers can gain valuable insights that may reveal significant parallels to human health.

A recent observational and analytical study published in ToxSci has shed light on this invisible invasion, revealing concerning details about their presence and impact, and advocating for better environmental protections.

[signup]

The Study At A Glance

Researchers aimed to detect and measure microplastics in the testes of dogs and humans using a method called Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). This technique heats samples to break them down and then identifies the tiny plastic particles.

They collected testicular tissues from 47 dogs during routine neutering surgeries at local veterinary clinics in New Mexico. The dogs ranged in age from 1 to 10 years and included various breeds for a diverse sample. Additionally, they obtained 23 human testis samples from the New Mexico Office of the Medical Investigator, with donors aged between 16 and 88 years.Β 

These human samples were part of routinely collected specimens from 2016. The researchers carefully analyzed these samples to identify the types and amounts of microplastics present. By comparing the results from dogs and humans, they could assess how widespread and significant microplastic contamination is in living organisms.

Key Findings

The key findings of this study are:

  • Presence of Microplastics: Microplastics were found in every sample of testes from both dogs and humans.
  • Types of Plastics: The study detected various types of plastics, including PE (polyethylene), PVC (polyvinyl chloride), and PET (polyethylene terephthalate).
  • Levels of Microplastics: The levels of microplastics varied among the samples. Human testes had nearly three times more total microplastic levels than canine tissues.
  • Species Comparison: Both dogs and humans exhibited similar proportions of major polymer types, with PE being the most common.
  • Correlation with Organ Weights: There was a negative correlation between specific polymers like PVC and PET and the normalized weight of the testes, suggesting that higher microplastic levels may be associated with lower organ weights.

The Significance Of These Findings

These findings are important because they highlight the extensive contamination of microplastics, which raises several major concerns, including:

  • Reproductive Health: The study found that microplastics are linked to lower sperm counts and smaller reproductive organs. This suggests that these particles could potentially affect fertility and overall reproductive health, which might impact future generations.
  • Impact on Organ Size: Higher levels of certain plastics, like PVC and PET, were associated with smaller testes in both dogs and humans, indicating a potential negative effect on organ development.
  • Health Risks: A 2024 study showed that microplastics are not just in our reproductive organs; they can be found throughout our bodies. Over time, these tiny particles can build up and potentially affect various aspects of our health. This is because the chemicals in microplastics can be toxic and may interfere with normal cellular functions. For example, they can disrupt our immune system, may contribute to carcinogenesis, interfere with development, and even potentially affect tissues like the brain and tissues of the digestive system.‍
  • Environmental Impact: A 2022 study showed that the presence of microplastics in our bodies reflects the broader issue of environmental pollution. These particles come from everyday items like plastic bags, bottles, and synthetic clothing, which break down and enter our ecosystems.‍
  • Urgent Need for Action: Understanding these findings can help us make better choices to protect our health and the environment. Reducing plastic use, supporting recycling efforts, and advocating for stricter regulations on plastic production are crucial steps we can take to address this issue.

Limitations of the Study

  • Limited Sample Size: The study examined a small number of dogs (47) and humans (23), which might not fully represent the larger population.
  • Geographic Limitation: Samples were only taken from New Mexico, so the findings might not be applicable everywhere.
  • Differences between Species used: Comparing dogs to humans has its challenges because their bodies work differently, which might affect the results.
  • Older Samples: The human samples were from 2016, which means they might not reflect the current levels of microplastics.
  • Unknown Exposure Sources: The study didn't identify where the microplastics came from, making it difficult to know the sources of contamination.
  • Variety Of Plastics And Their Effects: While various plastics were found, the study didn't investigate how different types of plastics might impact health in different ways.
  • Short-Term Perspective: The research focused on the immediate presence of microplastics, not on the potential long-term health effects.
  • Other Influencing Factors: The study didn't account for all possible factors like diet and lifestyle, which could affect the amount of microplastics in the samples.

Sources Of MicroplasticsΒ 

It highlights various contributors to microplastic pollution, including cosmetics, synthetic clothing, industrial processes, air, plastic waste, artificial turfs, drinking water, and plastic teabags.
  • ‍Cosmetics: Many beauty products, such as exfoliating scrubs and toothpaste, contain tiny plastic beads.
  • Synthetic Clothing: Clothes made from materials like polyester shed small plastic fibers when washed.
  • Industrial Processes: Factories and manufacturing plants often release microplastics into the environment during production.
  • Air: Microplastics can become airborne and be inhaled, coming from dust and pollution.
  • Plastic Waste: As plastic items break down, they create smaller plastic particles that can end up in soil and water bodies.
  • Artificial Turfs: Sports fields with artificial turf can shed small plastic particles, which get carried away by wind or rain.Β 
  • Drinking Water: Microplastics can be found in both tap and bottled water, as they can enter water supplies from various sources. They can also be found in bodies of water.
  • Plastic Teabags: Some teabags are made from plastic and can release microplastics into your tea when steeped in hot water.

Tips On How To Reduce Personal Microplastic Exposure

  • Use Less Plastic: Avoid single-use plastic items like straws, bags, and bottles.
  • Choose Natural Materials: Opt for clothing and products made from natural fibers like cotton or wool instead of synthetic materials.
  • Filter Tap Water: Use a water filter to reduce microplastics in your drinking water.
  • Avoid Plastic-Packaged Food: Choose fresh, unpackaged food whenever possible.
  • Be Careful with Cosmetics: Check labels and avoid products with "polyethylene" or "polypropylene" ingredients.
  • Support Environmental Initiatives: Participate in or support efforts aimed at reducing plastic waste and promoting recycling.

[signup]

Key Takeaways

  • The study revealed the widespread contamination of these tiny particles in our environment and bodies.
  • Key findings indicate that microplastics are linked to lower sperm counts and smaller reproductive organs, with humans showing nearly three times more microplastics than dogs.
  • To address this issue, it is important to raise awareness about microplastic sources, support policies to reduce plastic use and improve waste management, and help individuals minimize exposure by reducing plastic use and supporting recycling efforts.
The information in this article is designed for educational purposes only and is not intended to be a substitute for informed medical advice or care. This information should not be used to diagnose or treat any health problems or illnesses without consulting a doctor. Consult with a health care practitioner before relying on any information in this article or on this website.

Learn more

No items found.

Lab Tests in This Article

No lab tests!

Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and Fragmentation of Plastic Debris in Global Environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205

Chelin Jamie Hu, et al. β€œMicroplastic Presence in Dog and Human Testis and Its Potential Association with Sperm Count and Weights of Testis and Epididymis.” Toxicological Sciences, 15 May 2024, https://doi.org/10.1093/toxsci/kfae060.

Christie, J. (2023, January 25). The Health Risk of Plastics. Rupa Health. https://www.rupahealth.com/post/the-health-risk-of-plastics

Ding, Ruiyang, et al. β€œThe Detrimental Effects of Micro-and Nano-Plastics on Digestive System: An Overview of Oxidative Stress-Related Adverse Outcome Pathway.” Science of the Total Environment, vol. 878, June 2023, p. 163144, https://doi.org/10.1016/j.scitotenv.2023.163144.

Dris, Rachid, et al. β€œSynthetic Fibers in Atmospheric Fallout: A Source of Microplastics in the Environment?” Marine Pollution Bulletin, vol. 104, no. 1-2, Mar. 2016, pp. 290–293, www.sciencedirect.com/science/article/pii/S0025326X16300066, https://doi.org/10.1016/j.marpolbul.2016.01.006.

β€œGoogle Scholar.” Scholar.google.com, scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=microplastics&oq=microp#d=gs_qabs&t=1716405279520&u=%23p%3DkPCucBEW3rYJ. Accessed 22 May 2024.

Kumar, Rakesh, et al. β€œMicro(Nano)Plastics Pollution and Human Health: How Plastics Can Induce Carcinogenesis to Humans?” Chemosphere, vol. 298, July 2022, p. 134267, https://doi.org/10.1016/j.chemosphere.2022.134267.

Li, Jingyi, et al. β€œMicroplastics in Freshwater Systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection.” Water Research, vol. 137, June 2018, pp. 362–374, https://doi.org/10.1016/j.watres.2017.12.056.

Microplastics, algal blooms, seafood safety are public health concerns addressed by new Oceans and Human Health Centers. (2024, April 16). National Institutes of Health (NIH). https://www.nih.gov/news-events/news-releases/microplastics-algal-blooms-seafood-safety-are-public-health-concerns-addressed-new-oceans-human-health-centers

Napper, Imogen E., and Richard C. Thompson. β€œRelease of Synthetic Microplastic Plastic Fibres from Domestic Washing Machines: Effects of Fabric Type and Washing Conditions.” Marine Pollution Bulletin, vol. 112, no. 1-2, Nov. 2016, pp. 39–45, www.sciencedirect.com/science/article/pii/S0025326X16307639, https://doi.org/10.1016/j.marpolbul.2016.09.025.

PrΓΌst, Minne, et al. β€œThe Plastic Brain: Neurotoxicity of Micro- and Nanoplastics.” Particle and Fibre Toxicology, vol. 17, no. 1, 8 June 2020, https://doi.org/10.1186/s12989-020-00358-y.

Salthammer, Tunga. β€œMicroplastics and Their Additives in the Indoor Environment.” Angewandte Chemie International Edition, vol. 61, no. 32, 8 July 2022, https://doi.org/10.1002/anie.202205713.

Tea Time Truth: Study Reveals Your Cup Could Be Brimming with Billions of Plastic Particles. (2023, December 22). Rupa Health. https://www.rupahealth.com/post/tea-time-truth-study-reveals-your-cup-could-be-brimming-with-billions-of-plastic-particles

WHO. β€œMicroplastics in Drinking-Water.” Www.who.int, 28 Aug. 2019, www.who.int/publications/i/item/9789241516198.

Zhou, Yuwen, et al. β€œCurrent Research Trends on Cosmetic Microplastic Pollution and Its Impacts on the Ecosystem: A Review.” Environmental Pollution, vol. 320, no. 121106, 1 Mar. 2023, p. 121106, www.sciencedirect.com/science/article/abs/pii/S0269749123001082, https://doi.org/10.1016/j.envpol.2023.121106.

Zurub, Rewa E, et al. β€œMicroplastics Exposure: Implications for Human Fertility, Pregnancy and Child Health.” Frontiers in Endocrinology, vol. 14, 4 Jan. 2024, www.ncbi.nlm.nih.gov/pmc/articles/PMC10794604/, https://doi.org/10.3389/fendo.2023.1330396. Accessed 17 Feb. 2024.

Order from 30+ labs in 20 seconds (DUTCH, Mosaic, Genova & More!)
We make ordering quick and painless β€” and best of all, it's free for practitioners.

Latest Articles

View more on Research Studies
Subscribe to the magazine for expert-written articles straight to your inbox
Join the thousands of savvy readers who get root cause medicine articles written by doctors in their inbox every week!
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Are you a healthcare practitioner?
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Subscribe to the Magazine for free to keep reading!
Subscribe for free to keep reading, If you are already subscribed, enter your email address to log back in.
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Are you a healthcare practitioner?
Thanks for subscribing!
Oops! Something went wrong while submitting the form.
Trusted Source
Rupa Health
Medical Education Platform
Visit Source
Visit Source
American Cancer Society
Foundation for Cancer Research
Visit Source
Visit Source
National Library of Medicine
Government Authority
Visit Source
Visit Source
Journal of The American College of Radiology
Peer Reviewed Journal
Visit Source
Visit Source
National Cancer Institute
Government Authority
Visit Source
Visit Source
World Health Organization (WHO)
Government Authority
Visit Source
Visit Source
The Journal of Pediatrics
Peer Reviewed Journal
Visit Source
Visit Source
CDC
Government Authority
Visit Source
Visit Source
Office of Dietary Supplements
Government Authority
Visit Source
Visit Source
National Heart Lung and Blood Institute
Government Authority
Visit Source
Visit Source
National Institutes of Health
Government Authority
Visit Source
Visit Source
Clinical Infectious Diseases
Peer Reviewed Journal
Visit Source
Visit Source
Brain
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Rheumatology
Peer Reviewed Journal
Visit Source
Visit Source
Journal of the National Cancer Institute (JNCI)
Peer Reviewed Journal
Visit Source
Visit Source
Journal of Cardiovascular Magnetic Resonance
Peer Reviewed Journal
Visit Source
Visit Source
Hepatology
Peer Reviewed Journal
Visit Source
Visit Source
The American Journal of Clinical Nutrition
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Bone and Joint Surgery
Peer Reviewed Journal
Visit Source
Visit Source
Kidney International
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Allergy and Clinical Immunology
Peer Reviewed Journal
Visit Source
Visit Source
Annals of Surgery
Peer Reviewed Journal
Visit Source
Visit Source
Chest
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Neurology, Neurosurgery & Psychiatry
Peer Reviewed Journal
Visit Source
Visit Source
Blood
Peer Reviewed Journal
Visit Source
Visit Source
Gastroenterology
Peer Reviewed Journal
Visit Source
Visit Source
The American Journal of Respiratory and Critical Care Medicine
Peer Reviewed Journal
Visit Source
Visit Source
The American Journal of Psychiatry
Peer Reviewed Journal
Visit Source
Visit Source
Diabetes Care
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of the American College of Cardiology (JACC)
Peer Reviewed Journal
Visit Source
Visit Source
The Journal of Clinical Oncology (JCO)
Peer Reviewed Journal
Visit Source
Visit Source
Journal of Clinical Investigation (JCI)
Peer Reviewed Journal
Visit Source
Visit Source
Circulation
Peer Reviewed Journal
Visit Source
Visit Source
JAMA Internal Medicine
Peer Reviewed Journal
Visit Source
Visit Source
PLOS Medicine
Peer Reviewed Journal
Visit Source
Visit Source
Annals of Internal Medicine
Peer Reviewed Journal
Visit Source
Visit Source
Nature Medicine
Peer Reviewed Journal
Visit Source
Visit Source
The BMJ (British Medical Journal)
Peer Reviewed Journal
Visit Source
Visit Source
The Lancet
Peer Reviewed Journal
Visit Source
Visit Source
Journal of the American Medical Association (JAMA)
Peer Reviewed Journal
Visit Source
Visit Source
Pubmed
Comprehensive biomedical database
Visit Source
Visit Source
Harvard
Educational/Medical Institution
Visit Source
Visit Source
Cleveland Clinic
Educational/Medical Institution
Visit Source
Visit Source
Mayo Clinic
Educational/Medical Institution
Visit Source
Visit Source
The New England Journal of Medicine (NEJM)
Peer Reviewed Journal
Visit Source
Visit Source
Johns Hopkins
Educational/Medical Institution
Visit Source
Visit Source

Hey practitioners! πŸ‘‹ Join Dr. Chris Magryta and Dr. Erik Lundquist for a comprehensive 6-week course on evaluating functional medicine labs from two perspectives: adult and pediatric. In this course, you’ll explore the convergence of lab results across different diseases and age groups, understanding how human lab values vary on a continuum influenced by age, genetics, and time. Register Here! Register Here.

Hey practitioners! πŸ‘‹ Join Dr. Terry Wahls for a 3-week bootcamp on integrating functional medicine into conventional practice, focusing on complex cases like Multiple Sclerosis. Learn to analyze labs through a functional lens, perform nutrition-focused physical exams, and develop personalized care strategies. Register Here.