At least 136 million Americans have prediabetes or diabetes. By 2045, it is estimated that 700 million people worldwide will be affected by type 2 diabetes. In the face of rising trends in metabolic dysfunction and diabetes, there is a pressing need to adopt a functional medicine approach to blood sugar management, emphasizing personalized interventions aimed at supporting healthy blood sugar levels and addressing these concerning health trajectories.
[signup]
What is Blood Sugar Regulation?
Blood sugar regulation is a complex and tightly controlled process that involves several hormones, primarily insulin and glucagon, as well as the pancreas. The main goal is to maintain blood glucose levels within a narrow range to ensure that cells receive a steady and appropriate supply of energy. Let's quickly walk through the basics of blood sugar regulation.
The pancreas plays a central role in blood sugar regulation. It is an organ located behind the stomach and has both endocrine and exocrine functions. Islets of Langerhans are groups of endocrine pancreatic cells that produce the body's primary blood sugar-regulating hormones.
In response to elevated blood glucose levels, insulin is released by pancreatic beta cells. Insulin promotes glucose uptake by cells, especially muscle and adipose (fat) cells. It facilitates glucose transport into these cells, reducing blood glucose levels. (20)
Glucagon is released by pancreatic alpha cells in response to low blood glucose levels, usually between meals or during fasting. Its primary function is to stimulate the liver to convert stored glycogen into glucose (through glycogenolysis) and release it into the bloodstream. In situations where glycogen stores are depleted, the liver can also produce glucose from non-carbohydrate sources, such as amino acids and glycerol, through a process called gluconeogenesis. (27)
Disorders related to blood sugar imbalance encompass a spectrum of conditions, ranging from hypoglycemia, characterized by abnormally low blood glucose levels often causing symptoms like dizziness and confusion, to hyperglycemia, marked by elevated blood glucose levels, a hallmark of diabetes. Insulin resistance, a condition where cells become less responsive to insulin's actions, can lead to persistent high blood sugar levels and type 2 diabetes. These conditions pose significant health risks, potentially leading to complications such as cardiovascular disease, kidney dysfunction, and nerve damage.
The Functional Medicine Perspective
Functional medicine is an approach to healthcare that focuses on identifying and addressing the root causes of illness rather than merely treating symptoms. It emphasizes a personalized and patient-centered approach, considering the interconnectedness of various physiological systems within the body. Functional medicine practitioners collaborate with patients to explore lifestyle factors, genetics, environment, and underlying imbalances that may contribute to health issues. By understanding the unique aspects of an individual's health and addressing the underlying causes, functional medicine aims to promote optimal wellness and support the management of chronic health concerns.
The functional medicine approach to blood sugar differs vastly from that of the conventional medical model. Under the current standard model, the approach to blood sugar management involves reactive measures, waiting until blood sugar levels, as indicated by hemoglobin A1c (HbA1c) levels, reach a specific threshold before initiating treatment. The emphasis is on managing symptoms and complications rather than proactively addressing the underlying issues. In contrast, functional medicine advocates for a proactive stance by screening for early signs of metabolic dysfunction and insulin resistance, even before HbA1c levels indicate a diabetic state. This approach aims to identify and address metabolic imbalances at their inception, supporting the maintenance of healthy blood sugar levels. By focusing on early detection and personalized interventions, functional medicine empowers individuals to embrace a holistic approach to blood sugar management, making lifestyle changes that can positively impact their metabolic health, potentially reducing the need for more aggressive interventions in the future.
Functional Medicine Lab Testing
Utilizing specialty labs plays a crucial role in the functional medicine paradigm, offering advanced diagnostic tools to identify subtle imbalances, assess insulin resistance, and monitor blood sugar levels, enabling a more personalized and preventive approach to maintaining metabolic health. The following tests are commonly utilized for functional diagnostics in blood sugar management.
Fasting Glucose
Fasting glucose is a standard marker of blood sugar. This test measures your blood sugar after not eating for 8-12 hours. A fasting blood sugar level of 99 mg/dL or lower is normal, 100-125 mg/dL indicates prediabetes, and 126 mg/dL or higher falls within the diabetic range. This test is available through many labs, such as Access Medical Laboratories, and BostonHeart Diagnostics.
Hemoglobin A1c
HbA1c measures a patient's average blood sugar level over the past 2-3 months. A HbA1c level below 5.7% is normal, 5.7-6.4% indicates prediabetes, and 6.5% or higher is diagnostic for diabetes. Like fasting glucose, HbA1c is a standard lab available for order through many lab companies, including Access Medical Laboratories, and Ayumetrix.
Continuous Glucose Monitoring (CGM)
CGM is a valuable tool in blood sugar management that provides real-time information on glucose levels throughout the day and night. Unlike traditional blood glucose monitoring, which offers periodic snapshots, CGM provides a continuous data stream, allowing for a more comprehensive understanding of glucose fluctuations and trends. This real-time feedback enables individuals, particularly those with diabetes or insulin resistance, to make informed decisions about their diet, physical activity, and medication. CGM not only helps avoid hypoglycemia or hyperglycemia by providing timely alerts but also aids in identifying patterns and triggers influencing blood sugar levels, leading to better overall glycemic control and improved long-term health outcomes.
Insulin
Fasting insulin levels reflect the amount of insulin in the bloodstream after fasting for at least eight hours. High levels suggest insulin resistance – the pancreas must pump more insulin to maintain normal blood sugar levels. While standard reference ranges indicate that fasting insulin under 25 μU/mL is normal, metabolic specialists agree that optimal fasting insulin should stay below 10 μU/mL. The fasting insulin test by Access Medical Laboratories is a simple blood test that costs less than $20.
Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)
The HOMA-IR w/ Beta Cell Function test by BostonHeart Diagnostics uses the homeostatic model assessment to approximate insulin resistance. HOMA-IR is a slightly more complex test than fasting insulin in that it analyzes fasting insulin and glucose together to more accurately assess the degree of insulin resistance. The HOMA-IR test produces a single marker score, which is an indicator of insulin resistance. Most data have designated a HOMA-IR score of 2.5 as the threshold for insulin resistance.
Oral Glucose Tolerance Test (OGTT)
The OGTT is a test in which a patient drinks a glucose-containing liquid and then has their glucose and insulin measured every thirty minutes over the next two hours. Typically, glucose levels rise, followed by a peak in insulin, and then glucose steadily decreases over the remainder of the test as insulin efficiently removes it from circulation. Abnormal insulin and glucose patterns that deviate from this pattern can indicate the early stages of insulin resistance and can diagnose the presence of prediabetes and diabetes. (14)
[signup]
Dietary Strategies for Blood Sugar Control
Numerous studies support the efficacy of the Mediterranean diet in supporting healthy blood sugar levels. Research, including landmark trials like PREDIMED, has consistently demonstrated that adherence to the Mediterranean diet, characterized by high consumption of fruits, vegetables, whole grains, and healthy fats, is associated with a lower risk of developing type 2 diabetes. For individuals with existing diabetes, adopting this dietary pattern has shown positive outcomes in improved glycemic control, insulin sensitivity, cardiovascular health, and weight management. (24)
Why is this? The principles of the Mediterranean diet are centered around primary nutritional concepts known to foster optimal metabolic health, insulin responses, and stabilized blood sugar levels. First, the Mediterranean diet encourages the consumption of low-glycemic foods, including fatty fish, olive oil, non-starchy vegetables, whole grains, legumes, nuts, and seeds, while eliminating ultra-processed foods laden with simple sugars. In contrast to refined sugars and carbohydrates, many low-glycemic foods are rich in fiber and complex carbohydrates, which slow the digestion and absorption of glucose, promoting more controlled blood sugar levels and satiety.
The Mediterranean diet also balances the ratio of macronutrients (carbohydrates, proteins, and fats) consumed. While it's easy to solely direct our focus on carbohydrates when discussing blood sugar management, protein and fats have equally important roles to play in metabolic health. Protein is essential in building muscle mass, which is directly linked to muscular glucose uptake and insulin sensitivity. Research also indicates that reducing carbohydrate intake in conjunction with increasing intake of unsaturated fats supports insulin sensitivity.
Lifestyle and Behavioral Changes
Being physically active less than three times weekly is a risk factor for prediabetes and type 2 diabetes. Exercise directly influences how our bodies process and use energy. Physical activity prompts immediate glucose uptake by working muscles, reducing blood glucose levels. Muscle contractions during exercise stimulate the translocation of glucose transporters to the cell membrane, enhancing glucose uptake independent of insulin. This acute response improves insulin sensitivity during and after exercise, creating a window of heightened responsiveness. Over the long term, regular exercise induces adaptations that extend beyond the activity period. It promotes mitochondrial biogenesis, enhancing the capacity for energy production within cells. Persistent exercise also reduces overall body fat, particularly visceral fat associated with insulin resistance. Additionally, it mitigates chronic inflammation, a factor linked to impaired insulin sensitivity. The cumulative impact of these adaptations leads to sustained improvements in blood sugar control and insulin sensitivity.
When the body is dehydrated, it can lead to changes in blood sugar due to reduced blood volume. As the blood becomes more concentrated, the ratio of glucose to water increases, causing higher blood sugar concentrations. Drinking enough water, generally 0.5-1 ounce per pound body weight daily, can help maintain hydration and support stable blood sugar levels.
Sleep deprivation increases the risk of insulin resistance and high blood sugar by affecting oxidative stress and hormones involved in blood sugar and appetite regulation (e.g., insulin, cortisol, ghrelin). Therefore, improving sleep hygiene habits and sleep patterns in patients who do not meet sleep requirements should be considered as part of behavioral modifications for glucose control.
Supplements and Herbal Remedies
Dietary and herbal supplements serve as valuable adjunctive tools, complementing dietary and lifestyle modifications to provide comprehensive and sustained support for long-term blood sugar management.
Chromium
Chromium is a trace mineral that plays a role in glucose metabolism. Insufficient levels are linked to insulin resistance and type 2 diabetes. Chromium enhances the action of insulin by promoting its binding to cell receptors, allowing cells to take up glucose more efficiently. Chromium doses between 50-1,000 μg daily for 4-25 weeks are associated with reductions in fasting blood sugar, insulin, HbA1c, and HOMA-IR in patients with type 2 diabetes.
Cinnamon
The active compound in cinnamon, called cinnamaldehyde, influences various aspects of insulin action, such as promoting insulin receptor activity and increasing glucose uptake by cells. In a meta-analysis of ten randomized controlled trials including 543 patients, cinnamon doses of 120mg to 6 grams daily for 4-18 weeks were associated with reductions in fasting glucose levels by an average of 24.59 mg/dL. (1)
Berberine
Berberine activates an enzyme called AMP-activated protein kinase (AMPK). AMPK plays a crucial role in cellular energy regulation, and its activation has been associated with improved glucose uptake, enhanced insulin sensitivity, and increased glucose utilization by cells. Typically dosed at 500 mg three times daily at the beginning of meals, berberine supplementation is associated with reduced fasting and post-prandial glucose levels and HbA1c. The addition of berberine supplementation also enhances the favorable clinical results related to blood sugar when combined with dietary changes, lifestyle modifications, and hypoglycemic medications. (21)
Inositol
Inositol is a sugar alcohol that enhances insulin sensitivity through its involvement in cell signaling pathways related to insulin action and glucose metabolism. Improvements in OGTT, fasting glucose and insulin, and HOMA-IR have been observed in patients taking inositol in doses of 1,200-4,000 mg daily.
Managing Underlying Conditions
A functional medicine perspective regards blood sugar abnormalities not merely as isolated issues but as symptoms signaling potential underlying health conditions. Hormonal imbalances, including disruptions in cortisol and thyroid hormones, can significantly impact blood sugar regulation. Chronic inflammation, often stemming from various sources such as poor diet, stress, or unresolved infections, may contribute to insulin resistance and impaired glucose metabolism. Furthermore, disturbances in gut health, marked by dysbiosis, have been implicated in the pathogenesis of metabolic disorders, including type 2 diabetes.
In the functional medicine approach, addressing underlying health issues becomes integral to effective blood sugar management. Treatment strategies may involve personalized dietary interventions, targeted supplementation to support hormone balance, stress reduction techniques, and efforts to optimize gut health. This integrative approach recognizes the interconnectedness of various physiological systems, aiming not only to manage blood sugar but also to restore overall health and prevent the progression of chronic conditions. By addressing the root causes, functional medicine seeks to empower individuals to achieve lasting improvements in blood sugar control and overall well-being.
[signup]
Balancing Blood Sugar: Key Takeaways
Holistic blood sugar management with functional medicine involves acknowledging blood sugar abnormalities in the greater context of an individual's general health status. By understanding the interconnectedness of various physiological systems, individuals can not only manage blood sugar but also enhance overall health. Therefore, combining blood sugar-specific dietary interventions, lifestyle modifications, and supplementation with efforts to optimize hormonal signaling, stress management, and gut health is integral to achieving lasting improvements in metabolic function and blood sugar control.